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ABSTRACT

A planar time-optimal formulation 1s used to study
the terminal phase of Interceptlon above the atmosphere
in a uniform gravitational field. The dependernice on
initial conditlions of the optimal steering angle 1is
examined for 1initlal relative velocitles ranging from
£,000 ft/sec to 50,000 ft/sec and initial distances
up to 50C,000 ft, Results are presented in graphlcal
form for two typlcal rockets showing: (1) the range
dependence of terminal error sensitivitles to errors in
measurements of inltial conditions taken along the initial
rectlilinear coasting path and (2) the varlation in these
terminal error coefficlents along optimal interception
paths, Some 1intercentlons with proportlonal control

systems were made and ~anpared with the optimsl paths.

This report has been reviewed and is approved,

{4 sLoaw, g

Colonel, USAF
Chief, Flight Control Division
AF Flight Dynamics Laboratory
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SECTION 1

INTRCDUCTION

We examline the termlnal phase of an interception
problem in terms of a minimum time formulation. The
problem 1s based on a simplifled model; the target 1s
assumed to be non-mancuvering and moving 1n a plane
under the Iinfluence of a niform gravitatlonal fileld,
The entire interceptiocn takes place above the sensible
atmosphere. The minimwn time interception cteering
program is a constant angle in inertial space., The
simple form of the optimal control 1s appealing; there
may be sltuatlions where time optimallty 1s unlmportant,
yvet the form of the control law may prove to be a signl-
ficant factor in the deslign of the flight control and
guldance systems, The terminal phase of an interception
may take place in a very short span of time, For
example, only about two seconds elapse between the time
a target 1s acqulred and the time a target is passed if
the initlal range 1s 20 miles and the relative speed 1s
50,000 ft/sec. In thils study we do not try to map out
the regions of accesslbllity for different interceptor
rocket parameters, We do present some typical trajec-
torles so that the nature of the optimal paths can be
seen in some specific Instances. Our goal in the work
was to see how the optimal control could be used in an
operational sense, to point out the critical areas from
the standpoint of feasibility, and to provide an
analysis and a computer program for simulated inter-
ceptions, Relative velocities ranging from 5000 ft/sec.
to 50,000 feet, and initilal (no control) miss distances
up to 43,000 feet are used in the illustrative examples,

Manuscript released by the authors July 1964 for publi-
cation as an RTD Technical Documentary Report.

AFFDL-TR-65-20, Vol, II




The error coefficients, i.e., the partial derivatives
of the final miss distance with respect to 1ﬁ1t1a1 conditions,
form an essentlal part of the study. These coefficients
depend on all the initial conditions. The computation
of the optimal control depends on the use of measured
values of the relative range and velocity between the
target and interceptor. These measurements may be
accomplished by ground based, or missile based equipment.
The control computer uses these measurements of relative
position and velocity to calculate the optimal steering
program. Errors in measuring position and velocity
generate errors in the calculated steering program
which in turn cause errors in the path and final miss
distance. The interceptor must have a means for gulding
the direction of the rocket thrust. Errors in carrying
out the commanded steering program also cause errors in
the end conditions. The senslitivity of the entire
system operation to random errors occuring at various
points in the control loop must be determined so that
steps may bve taken to minimlze the expected miss distance,
variance of' the terminal error, or some other performance
criterion. We will not consider the problem of coptimizing
statlistical propertles of the end conditions. We will
outline a method for estimating the statistics of the

terminal errors.

The'control for a time optimal interceptlon, based
on a deterministic formulation, ignites the rocket as
soon as the target is sighted. A control policy based
on stochastic considerations might not do this. The
initial estimates of relatlive position and velocity may
be poor and might be expected to improve as more obser-
vatlions are made along the coasting path. That 1is, it
may be better tc continue coasting towards the target



makling measurements and walting for an opportune time to

igriite the rocket, It still remalns tn zpeclfy what 1s
meant by an opportune time. Suppose that once the
optimal steering angle 1is determined the rocket direc-
tlon 1s held fixed In space by a stabllizsticn systom

and further correctlions are not allowed; this Is an
cpen-locp terminal guldance scheme, The beost time to

fire 1s the time when the sensitlvity to errors 1in the
{nitial conditions is least provided that the intercept
can still be made,  The definitlon of least senslitlivity
to errore 1s open to interpretation, but this will not

be pursued in any greater detall at this point. Correc-
tions to the steering angle made during powered flight
regulre a closed-lcoop te.minal guidance system, The
sensitivity to ~orrors depends not only on the sensitivity
coefficlents *tuken at the initial time but on the inte-
grated effect o! errors made during powered flight.
Several sample sets of open-loop error coefficients are
computed along coasting paths, as well as closed-loop
coefficlents computed along optimal trajectories. These
error coefficlients yleld the expected terminal errors

for both oper-loop systems and closed-loop flight control
systems for the sample optimal paths. The closed-loop
analysis requires knowledge of the nolse characteristics

of the sensors and other components of the guldance
systems,




SECTION 2

FORMULATION OF THE PROBLEM

T™me Optimal Interception.
e r

[

. . as e s _ e o e
The simpilifiied egquationg of molion are shown Lelow

in ecanonical form

X
v o=,
c .
VX = -__7-__.7'1"10, B _——t- COsS «
C
L Q
= Six
y mc/ﬁ - T noa
X
‘ V(o)
R a

Figure 1, Coordinate System

We want to bring the state variables x and y to¢ zero
simultaneocusly in the least time. There are no specifi-
cations placed on the terminal values of Vo and vy.

In the equations above, ¢ is the rocket character-

o]

istic exhaust velocity, m, is the initlal system mass,
£ 1is the propellant mass flow rate, end a 1s the direc-
tion of the rocket thrust measured from the positive x

axis, The coordinate system is shown in Fig, 1. The target




1s assumed to be falling freely under a uniform gravitational
field. The origin of the coordinate system 1s placed at

the target. The entire interception 1s assumed to take

place above the atmosphere.

The optimal contrel 1s easily obtained from the
maximum principle (1, 2). Introduce adjoint variables
pi(i = 0,,.4) and form the Hamiltorian

H=75 piii = plﬁ + ey + p3vx + puv + P

or
C

¢
. O — Fa g O < SO
H - plvx + pﬁvy + p36576*:~t COoul+paa;7E—T—g~in a + po
Maximizing H over all a ylelds the result

p,(5)
. o T4
Tan a = 5;\:7

The adJ»int varlables Py satisfy the equatilons

. W
Py = 3x1
pl(t) = pg(t) = 1
p3(t) = - pl(o)
pu(t) = = pg(o)
Therefore - o
e e

The optimal angle, a® , and the optimal time £°
for each initial condition can be found by solving a pair
of transcendental equations. These equations are obtained
from the integration of the equaitions of motion:

x(t O)—O“-'O‘DKé~t 6)£n (1 —~—]cos ® 4+ v (O)t + x(0)
y(itc‘)uo--‘-g-" [(1 -?,,Toﬁ)zn (1-%-69} -”ﬁfjam a® + vy(o)t° + y(0)

5




These equatlons may te solved by squaring, elimlnating

1* o

a” , and [inding t° . The relations between t° , @

and the initial conaltiorns are then used to find ao .

A graphical solution developed by Faulkner is
deszribed 1n Reference 2, The method used in this study

1s described in the Appendilx.
2. Closed-Loop Systems with Random Noise.

The solution of the eguations developed in Part 1
of this sectlion gives the optimal steerlng angle as a
function of the 1initlal conditions. The closed-loop
flight control system based on this steering law will
have to operate 1In the presence of noise. We distingulsh
vetween the actual state of the system, the measured
state, and the best estimate of the state; the control
is computed on the basis of the best estimate of the
state. If no filter 1= used, the control 1s computed
directly from the measured state varlables. The actual
trajectory evolves from the initial state, x{(0) , in
response to the applied control. With no feedback the
trajectory x(t) would miss the target by an amount
calculable from the equations of motlion and the error
in control application. The information on measurement
errors, disturbances, and contrcl actuation errors 1is
agsumed to be statistical, i.e., we may not know in
advance what the errors will be but we may know something
about the probability density distribution of the errors.
Let the difference between the nominal trajectory xo(t)
and the actual trajectory x(t) be called &x 1.e.:

x(t) = xo(t) + 8% . The equations governing the
motion are:

%y(t) = £,(x , @) (1)



where X 18 an n-vector and a 18 a scalar control,

We assume, at least for the present, that [ 15 diffcr-
entiable with respect to x and a., We will also assume
that the optimal control qo(x) can be differentiated
everywhere with resyect to x. We shall restrict the
ortimal noainal paths to those which carn te embedded In

a f'1eld and eliminate s large class of problems, e.g.,

it is possinle to

(=

bang-tang mininmum lime controllers.
analyze the bang-bang rroblems separately and they will
not be eonsidered here at all. Kalman has studied prob-
lems of optimal {iltering and control for linear systems
with auadratic performance criteria {3,4}). Our 2nalysis
bears a resemblence to some of that work, but the motiva-
tlon here 1s different. We want to estimate the statis-~
tical propertles ¢of the terminal error, but we ars not
going to synthesize an ortimal iilter.

We take up the casze of no {iltering. We want tc
look at the differernce between the actual path and the
nominal path and eliminate the observed variables. The
observed values are X = x{actual) + N = x° + 6x + N
where N 1s additive noise.‘ The control applied is
a = a® + 6a where ba = é%;‘xg(éx + N) + &. The error
in applying the c¢ontrol 153 d. The sketch below 1llus-

trates the genera. 1dea,

Figure 2, Relation between Actual Path,
Nominal Path and Observed Path




All partial derivatives are evaluated along the nominal path.
The |, 0 wlll not be used unless there 1s a possiblility of

ambiguity. It follows from the equations »f motlon that

PRt P Bf ; (2)

Substituting for &éu we find that

¢

N + — & (4
0 + sz 3y N3 @ )

{3/
™

Th response of the system to initial errors, measurement
errcrs, and actuation errors 1s evaluated by solving
Equation (“— ) .

The changes in control, éa , depend 1inear1y\og
3a

the actual disturbances In the state, i.e., éa = 32— | &x .
3@ %©
The term T%: i1s Just a time-varying gain. If we
da®

have already synthesized an optimal controller and S5
is available we can examine the behavior of closed-loop
optimal systems. The analysis, however, does not depend
on having an optimal c¢ontroi. It requires only a2 nominal
path and a linearized f'eedback equation.

This means that Equation (4) can be used to study
any linearized feedback system with time-varying gains.
Furthermore, there is the possibility of selecting these
time-varying gains to optimize a performance criterion
associated with the closed-loop errors. This 1s the
approach Kalman takes in the previously mentioned work
on optimal linear feedback systems with quadratic criteria.




Two ¢Xanplesd ar= glven 10 shrW now *hiis method oan

be appliled.

Example 1. Linear Scrvonechanlsm (regulatort,
The system 1s described by the followlng equation

X = AX + Bu
whore

an n=vector

Pt
821

n X n ratrix

1]

n X rr matrlx

0
b e
©w oW

an r-voctor
The commanded control ls a lilncar functlicn of the observed
kx = k(x° + 8x + N). The control

actualiy applied, u 1s assumed to be the commanded

state variables u

>

~

control, u, modified by additive noise, 1.e. U = u + u,
where U 18 the error ir the control. The vector N is
the noise added to the state variables. The actual errors

in the state variables are obtained by substitution.

. O
bX = <A + B %;j) ox + B %%? N + BU (5)

z) If W =0, 1.e. perfect control, and N = O, no
noise, then 6x(t) is determined by 6x(0) only.

b) If 6x{0) = O, then &x(t) is determined by the
noises N and d., The linear case with
Gaussian distributions fcr» the random errors
can be solved completely by well-known methods.

Example 2. A Time-Optimal Steering Problem.

Suppose we desire to steer a vehicle with constant
sreed, v, from one locatlon to another 1in least time.
The equations of motion are
X =V cos a (6a)

y = -v sin a (6b)

where a 138 the angle between the velocity vector and
the x-axlis measured positively counterclockwise,




[RI h‘i

Suppoos the ‘farrct iIs g ~irele of radtun e rantereaed

a4t the orlgin as shown In Figure 3 below.

x(t), y(t)

ZZMINAL PATH, %\TARGET

y°=0

O e

Figure 2. Time Optlmal Steering example

It is easy to show that tne time coptimal steering
anglie for thils problem directs the velocity vector towards
the target at each instant of time. The igsochrones are circles
origin. The application of Equation (4) yields

o

centered at Th

r

o o -
ox = vt-sin ao{%§-(éx+Nl) + %%—(6y+N2)+ a }} (7a)

&y v[cos ao{§%2(6x+N2) + g%i(éy+N2)+ é}] (7v)

The equation of interest is (7b). We are free to
<hoose the orientation of the coordinate system axes.
The nominal initial conditions can be taken as: 7
x(0) = x_, ¥(0) = 0O and the nominal optimal path will
be y°(t) =z 0.

Along the nominal path aa “g

=0 and
6—[sin ijfz;ji ——<J§- -ﬁ-for x2>>y where R x2+y2.
xet+y yo

The equation for &y becomes

& = - % (sy+N,) + v@

10
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or

O
e
§
]
b
ct
Cr
<
{
+
<
9]

The equatlon for trhe closed-loop optimal contrcel has a

singularity at the nominal intcrception time; t = Eégl .
The net effect 1s to create a feedback galn inversely

proportional to R,

If the initial error &y(0) 18 known and if the
nolse N2 and actuation error are Krnown to be statl ica11y
ind:pendent trer the statistical bahavior of dy(t)
be fownd from the Fokker-Planck equation (5). In the

case of (Gausslan nolse, the solutions are casily cbtained

()

by more direct methods. For example, the solutlon of the
differential equation can be written explicitly as

oy (t)= 6y(o)[£19_2.6i’).‘£] 5_(_2?_—5\77_2\/‘ Tf}?—w\? N, (t)dt
¥ <%\ f %Z—%f—ﬁ E(t)ar
O

Suppose %% = K(t) where K(t) 1s prescribed in
advance instead of the optimal feedback. The equations
then are

8y = vk(t) (6y+N2) + va

If XK(t) 1s constant, then
5y = vK(6y+N2) + va

and the steering problem now is a speclal case of the
servomechanism prcblem used in Example 1 with n = 1,

11




This first order differential equatlon represent:
a lirear transiormation of Gausslan processes., The
random function &y(t) 1s the sum of two lir=arly trans-
formed Gaussian procesdses and has a Gaussiar distribution,
Suppose, for example, that N2 = C, Then, return-
ing to Example 2,

t
. X{C) - vt *{(C) ~ vt (C)
Syt = éy(o)[-kx(o)““J + LikO, / x(é§“;vv1 ddr
£
E(oy(v)) = E(y(o) il —vt)  x{o - ve [ x(Olv_pig)4,
x{u) x(C) Jxive - vT
and

. 2
+ [X O’\) - th] U VZXELOl W ( )d"' d
x(0) JL x0T = ve JIx(0T = vr T a TysTp/97147,

where RE(Tl’TQ) = E{(a(rl) - a)(E(TE) - E)} is the
autocorrelation functicn for o (6). The same result
can be obtained via the weighting function-power
spectral density approach (7).

The analysls discussed in the preceding paragraph
can be appiied 1n a relatively simple way to improve
non-optimal feedback about an optimal path., Suppose
that we use a constant gain feedback (K < 0O) based on
the displacement from the nominal path., If the actuator
errors are negligible compared to the measurement errors,
we may write: &y = vKdy + VKN,

Suppese also that the initial errors and measure-
ment nolise have Gausslian distributions with zerc mesans,
Let the variance of the measurement ncise be g, and
the noise be "white" such that kN(Tl,TE) = qé(rl - 12)
and 6 18 the Dirac Delta functlon; the variance of the
initial errors be 0°(0). The variance at the terminal

12
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time t° 18 given by

2 - ovkt®  quk 2vKt?)
by (tc) = % ey(0)® S pil-e

and &y(t®) has a Gaussian distribution with zero mean

and variance, Gﬁv(*o\ ] It 1s possitle to f'ind a value
Sy Lo ; ,; ) Ti )

n

of gain H that mlnlimlzes o , 0y tnote *rat < 7 o )
”~ Sy : 3}( [T
-x - C - . - . i B R =
<0 at K =0, and Sﬁnfuo) —> 400 s K R " 1=
N AN '
will not car.y these simple examples any further, They

serve the purpose c¢f showing trat tre error

(@]

oefficients
are degirable obhlects to obtaln, They play an important
role in evaluating the behavior of a control system in the
presernice cof random nolse, In the nex: section, we will
exanine the dependence of the error coefficients on
initial conditions.

13




SECTION 3
COMPUTATTONAL STUDIES

The discussion in Section 2 was directed at the
analytical formulation of the interception problem. In
this sectlon, we exzamine the sensitivities of the inter-
ception paths to errors. Figure 4 shows a typlcal inter-
ception configuratlon. The parameters of interest are
the initial miss distance, p_ = R(O) sin ¢, the initial
rarge R(0), and the initial velocity V(0). The thrust
level 1s not adjustable; the optimal steering angle can
be found by the method described in the appendix.

y ¢

Figure 4. Typical Intercept Configuration

Table I contains a partial llsting of the cases studied.
The miss distances or distances of closest approach, p,
are gilven for five values of initial range and four values
of 1nitial velocity. The results are grouped according

to the 1nitlial range; each group is ordered according to
the initlal miss distance po. _

Two rockets were used 1n this study’and their
characteristics are listed below. These values are
typlcal of the kina of rockets being considered for
use in misslile and satellite interception studies.:

14




Rocket #1

c
o

me = .15 m,, B/m = .1/sec, ty, = 8.5 sec

]

10,000 ft/sec - effective exhaust velocity

a (0) = 30 g (approx.)
'ém(tb)'é 200 g (approx.)

AV, eal = 18,900 ft/sec
Rocket #2
¢, = 10,000 ft/sec
me = .15 mg, B/ho= .05/sec, ty = 17.0 sec

a (0) = 15 g (approx.)
a (tb) = 100 g (approx.)

AV = 18,900 ft/sec

ideal
These rockets have the same mass ratio (mf/mo) and the
same Avideal’ They differ in the burning rate of the
propellant and in the acceleration time history.

Two sets of trajectories are shown in Figures o
and 7. (Note that the x-y scales are not the samec.)
Each set of figures shows the effect of initial speed
on the interception paths; Figure 6 is for Rocket #1,
Figure 7, for Rocket #2. It may help to refer back to
Figure 1 where the coordinate system 1s defined.

The trajectories shown in Figures 5 and 7 represent
simulated interceptions with the rocket ignited at the
polint of acqulisition of the target.

Imagine a situation where there 1s a possibility
of delaying the ignitlon of the rocket to improve
the relative position and veloclty measurements.



Filgure 8 shows the family of interception paths for
Rocket #1 emanating from the coasting path starting at
R(O). 'The target 1s sighted at a rangé of 500,000 feet
and the interceptor approaches the target on the coast-
ing path at a speed of 10,000 ft/sec. The miss distance
fo in the absence of terminal control 1is 4,363 feet.

Each path 1n this family is obtained by solving
for the optimal steering angle and computing the optimal
trajectory. Tne optimal steering angles, ao, are
shown in Figure 8 next to the starting points. The
optimal steering program to the target from any start-
ing polnt i3 constant and 1s measured from the positive
Xx-axls as shown 1n Figure 1. This angle depends on the
initial conditions and 1t changes as the starting points
vary along the initial coasting path. The cptimal steer-
ing angle changes by about only 70 as the initial range
decreases from 500,000 feet to about 100,000 feet. The
rate of change of steering angle Iincreases sharply
thereafter. The effect of a time delay in igniting the
rocket can be determined by an examination of the rate
of change of a® along the coasting path.

Open-loop miss sensitivitles have been found
for cach of the starting points shown in the figure.
These partlial derivatives represent the sensitivity
of terminal =rrors to errors in initial measurements
and to «rrors 1in steering. These are shown next in
Figure 9. The sensitivity of the error in y(7) at
the diStanéémbf closest approach to errors in a®
1s shown in Figure 9. The sensitivity o y(T) to
crrors in of decreases continually as the target
:s approached untlil the range 1s very sm=all. A sharp
lncrease in cteering angle sensltivity with decreas-
ing range 1s shown for th: other Initlal conditions in

16

S e e pp g e



the remaining figures of tnis set, This is not unex-
pected; the a° listings o:. Fig. 8 show a rapid change 1in
the initial steering ang,l= as the range approaches 40,000
ft. The paths change from head-on interceptions to beam
approach interceptions in this region as the interceptcr
coasts by the target. The 1initlal relative velocity of
10,000 ft/sec 1is low enough to permit the interceptor to
reverse its direction of motion. Two paths shown in Fig.8
pass the target and reverse direction. The discontinuous
changes 1n the error sensitivities (shown in Fig. 9) occur
as the interceptor rasses a beam of the target.

It 1is possible tu compute some of the partial deriva-
tives directly from the Integrals of the equations of

motlion, e.g.,

o] r O c.m o] O o]
aX(t ) = dx(t) - 009 (l_,t E)in(l— t B)+-t—£](-sin aOg
da® da a:aofs Mo Mo Mo
(o] (o} c . m (8] O (o)
By(t ) = ay(t ) = O, Or(l- —P—-E)Zn(l-g—‘é)'*' .t’.-@:l coS ao
da® da ~o° B L Mo Mo My

O\
oy(t™) 1
ay (0)
These derivatives are evaluated at éhe nomlinal optimal
cime. 2 . . . aal oa®
time, . The derivatives of the form Sx(0) ° S%(0T’ ete.,
are more dirficult te obtain 1In closed form as the optimal

angle 1s given implicitly.

Trajectories with initial relative speeds ot 25,000
ft/scec and 50,000 it/sec are shown in Figures 10 and 12
with Rocket #1 and in Figurcs 14 and 16 with Rocket #2.
Error coefficlients for these cases are glven in Flgures
11, 13, 15, and 17.
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The princiral error coefficlents

oy(T) Qy(r) dy(T)
dx{0) ~ dx(0) T dr(0)

are presented in Figures 18 and 19 for tie irajectories

of Figures 10, 12, 14, and 10, These are evalualed at 7T ,
[+ cat approach to the target, with perturbed
ction angle res lting from perturrations in tre

e
initial conditlo ‘"e error coeftliclients

—y
~
—
’J’\

(1) dy()
Ix(0)  23x(0)

increase in absolute magnitude as tne initial range
g &

o oy (T ; :
decreases; the coefflclent ‘¢++6T decreases in avsolute
ay i

magnitude as the range decreases. Thne location of the
best place to lgnite the rocket from the standpoint of
open-loop terminal error dispersion can be found by using
the noise characteristics of the sensors.

The analysis of feedback systems reguires the
partial derivatives

A 3a° d3a® amiéf
dx ~ ox ~ dy dv

along the optimal path. The latter three derlvatives are
presented in Figures 20 and 21 for theosample cases
discussed earlier., The derivative %ﬁ; is very small
except at the very end of the flight and 1s r»>t plotted
here, The derivatives are plotted as functions of R ,
range. The differential equations require these ac
functions of time and the computer program provides both
forms. The derivatives generated by the computer program

can be used as indicated in the following paragraphs,
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If the equations for error propagation in an

optimally-controlled system are expanded, we obtain

8v_= -a(t) sin a° %g—éx + éc—"—N - la(t) sin o°| &
5 i=1 i=1
= 6v

’ v of : da® 3 a°,, | o

L] = t ~

évy a(t) cos a _Xa—x{é"i +ZFJ?IN14 + [a(t) cos a ] a
i::l i=1
c

where af(t) = mg—_——t, X = éx, x2~= 6Vx, x3 = 8y, Xy =

évy, Ni = measurement errors, and a 1s the error in

applying the commanded control.

The quantity a(t) 1s known from the rocket speci-
fications. The optimal angle, 1s a constant along
the nominal path.

The specification of the statistical character of
the noise N, and actuation errors a(t) provides the
information needed to evaluate the statistical properties
of the terminal errors. The function a(t) is 2 rapidly
%ngreasing function of time. The derivatives 2%7’ 993,
T%P’ are also increasing functions of time. 'The optimal
steering angle becomes very sensitive to measurement
errors. - This may be thought of as a raplid incrcase in
a. feedback gain near the end of powered flight.

A time-varying feedback control galn that takes
into account the variation in measurement error statis-
tics along the flight path may prove to be better than
the closed~loop time optimal controller from the stand-

a®,

polint of error sensitivity.

The error propagation 1s governed by a set of
inhomogeneous time-varying linear differential equations.
The forclng functlions acting on these equations are the

measurement errors Ni(t) and the actuatlon errors a(t).
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Large measurement errors during powered flight may cancel
the benefits derlved from feedback of the estimated

position and velocity errors. If there were no measurement
errors, i.e., N1 = 0, then the terminal errors due

to @ (t) can be reduced by the use of feedback of

position and veloclty signals. The presence of measurement
nolise, N1 , makes necessary a detailed analysis of
closed-loop guidance. It seems fairly clear that if

the nolise level 1s high compared to the inltial errors,
éxi(o) , 1t may be desirable to run the system open-loop.
The terms closed-loop and open-loop appiy to the use of
commanded changes in the steering angle due to errors

in position and veloclty alorg the nominal path. The
optimal steering angle in elther case 1s to be controlled or
stabilized in direction by some other attitude control system.

We will illustrate the use of results of the computer
program by a simple single variable open loop example.
Suppose that the measurements ot the single variable y
are corrupted by additive noise, the variance of the
measuresment noise déﬁénds'linearly on range, and the
commanded control has no errors i.e. a = O, Suppose
also that one of the graphs 1in Figure 18 represents the
sensitivity of terminal errors to errors in 1initial
determination of position and that this curve can be
satisfactorily approximated by an exponentlal functilon.

It 1s relatively simple to find the best range for
initlating the control to give the smallest varlance in
the terminal errors. The best locatlon occurs either at
an interior point or at one of the extreme ends of the
interval beginning at the point or target acquisition

and ending at the last point where an interception can

be initiated. (This interval may not be closed.)We assume

that ths terminal error depends linearly on 6y(0) for

small initial errors so that
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N
—
b

3yl
Gy(T}(x) - [By(O)

y(O) = gl_(O)

An interior minimum 1s sought by differentliating the
expression (where y 1s used 1n place of y(0))

r ¢
P TN !rmlma.l
Z S o T

v Léy(O)J

with respect to range (x). 1In this example, let

ai(x) = Db + cx b, a > v, x>0
and
Ay (T) e 2_-2AX
- = a e A< Q
dy(0)

We must look at the zero of

éi{(aee_gkx) ¢ (b + cx)J

and see 1f 1t lies 1n the interval of interest and test
to see if we have a maximum or a minimum, Even this
simple example provides some interesting results. The
derlvative of the terminal variance with range 1is

2% —Ek:x[

22(b + cx) - c]

The vanishing of the derivative corresponds to a

maximum sensitivity; the minimum sensitivity occurs at

one of the endpoints. The minimum location depends
strongly on the parameter b, For b = O, the derlvative
vanishes at x = gi. The interlor extrema 4o not depend
on the parameter a at all,

This procedure can be applied to multivariable prob-
lems 1n a straightforward way using co-variance matrices
instead of the scalar variance used in the example.
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SECTION 4

PROPORTIONAL CONTROLLERS

Interceptions with proportional control systems
were slmulated on a digital computer. Three modes of
control were studied:

Mode A - The thrust is directed along the line-of-
sight towards Lhe target. The possibility
of using a constant lead angle 1s included,

Mode B - The thrust 1is directed off the 11ne-off*
sight by an angle proportional to ¥ ? L
Iin the senise required to reduce the rate

of rotation of the line-of-sight.

Mode C - The thrust 1o pplled normal to the line-
of-scight in the direction needed to reduce
the rate of rotation of the line-of-sight.

If the interceptor veloclty becomes aligned
.‘with line~of-sight, there is an optilon
either to stop thrusting or to thrust
along the line-of-sight.

By putting limits on the steering angle and raising
the gain, we can also obtain thrusting perpendicular to
the line-of-sight from Mode B. Firing perpendicular to
the line-of-sight worked quite well,

We did not explore 211 the possible combinatlions of
initial conditions and control gains. The reachable sets
for the optimal steering were not mapped in detail. It
1s not difficult to determine on the basis of physical
considerations which of the possible control schemes are
mcst desirable. The control must direct the relative
velocity vector towards the origin before the rocket burns
out. If the time of flight in the terminal phase is
shorter than the rocket's burning time and if the trans-
verse veloclty component 1is large compared with AV
available for the rocket, then it ls desirable to fire

22
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slightly backwards. This lengthens the time available
for reducing the transverse component. In effect, this
Is a2 trade between interception time and terminal error.
Firing along the line-of-sight 1s undesirable in this
situatlion. On the other hand, if the transverse velocity
is low, the initial miss distance 1is small,and the time
of flight 1s long, then the time optimal steering angle
is very close to the llne-of-sight. Thls can be seen

in Figure 23.

Figure 22 shows five trajectorlies starting from
ldentical initial conditions. Path number 1 is the time
optimal path; thrusting perpendicular to the line-of-
'sight,. Mode C, gives path number 2. Mode B produces
path 3 with a miss distance of 24,000 feet. The result
of steering along the line-of-sight, Mode A, 1s the path
marked 4, with a miss distance of 91,000 feet. The
steering angles uscd are given in Figure 23.

The galns used in these runs were selected a priori
and were not optimlzed with respect to the miss distances.
The optimal control system employs a computer to solve a
transcendental equation; the application of thls computer
to the problem of gailn and lead angle selection would
undoubtedly lmprove the performance of the proportiocnal
controllers,

The optimal controller nevertheless possesses
..dvantages which are not matched by the proportional
controllers. The optimal-control computer willl minimlze
the miss distance instead of interception time if a hit
cannot be scored. The computation of the optimal cont:ol
alsc takes into account the terminal coastlng phase after
the propellant 1s exhausted. Furthermore, the coptimal
control produces hilts for initial conditlions which lie
on the boundary oI the region of attalnablility whereas
the proportional controllers need not do this.
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SECTION 5
SUMMARY AND CONCLUSIONS

A planar time optimal formulation is used to study
the termlnal phase of an interception problem. The
optimal steering program for interception in a uniform
gravitational fleld in the absence of aerodynamic drag
requires the thrust direction to be held constant in
inertial space during the powered portion of flight.

The optimal steering angle 1s a function of the relative
initial position and relative velocity. We have examlned
the dependence of the optimal steering angle on the ini-
tlal conditions for inltlal velocities ranging from

5,000 ft/sec to 50,000 ft/sec. The results are presented
in graphical form showing: (1) the range dependence of
the terminal error sensitlivities to error in initial
poslitlon and relative veloclty measurements taken along
an 1initial rectilinear coasting path,and (2) the varia-
tion in these terminal error sensitivities along an
optimal interception path,

Simulated interceptions were made using proporiional
controllers. Three modes of control were tried; thrust-
ing perpendicular to the line-of-sight gave good results
in the cases studied. The optimal controller 1s predictive
in nature and takes into account the possibility of a
terminal coasting phase after the propellant 1s exhausted.
The computer also predicts whether or not a hit 1s possi-
ble and will minimlze the miss distance 1f an intercep-
tion 1s not possible. Further work 1s needed to iuwnrove
the performance of the proportional controllers, e.:z.,
selecting the galn and lead angle as functions of ::inge,
veloclty or comblnatlons of other variables before =
definitive comparli:on can be made with optimal con-rollers.



One of the results of our work is a flexible digital
computer program with many options, which can simulate
optimal interceptions, generate the error sensitivities
along initlal coasting paths and along optimal paths and
make terminal error dispersions studies. A listing of
the program and a set of cards are available at ARAP.

The study of error sensitivities ralsed several
important questions which are not yet settled. The
computéfmprogram, as 1t now stands, 1s able to simulate
closed-loop 1Interceptions. Several check problems were
run but systematlc studles were not made because of the
dearth of unclassified realistic data on radar and
sensor nolse and missile-borne guidance and attitude
control systems. Future research programs in this area
could take advantage of this computer routine to inves-
tigate the behavior of optimally-controllec hypervelocity
interceptions, with and without relative position and
veloclity feedback during the burning portion of the
flight. Thils simulation should include measurement
errors and actuation errors based on experience with

actual equipment tests.
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TABLE 1
SUMMARY ‘F INTERCEPTION RUNS WITH OPTIMAL CClHTROL
Rocket#1
Initial 188 I'istance| Miss Distance Initial Optimal
Range without with optimal| Velocit Steering
cor.trol control (ft/secg Angle
R(0)(ft) pe  (ft) p (£8)]  V(0) a®
50,000 873 .000 10, 000 175.77
" " .000 15,000 171.03
" " .000 25, 000 155.01
" " 355.0 50,000 89.79
" 1,309 .000 10,000 173.66
" " .000 15,000 166.50
" " .000 25,000 140.94
" " 791.0 50, 000 90.29
" L. 745 .0C0 10,000 171.54
" " .000 15,000 161.91
" " .000 25,000 123.70C
" " 1,228.0 50, 000 90.79
" 1r,358 .000 10, 000 158.75
" " .000 15, 000 131.47
" " 2,209.0 25, 000 89.86
" " 3,843.0 50, 000 93.80
" 3,682 .000 10,000 136.70
" " .000 15, 000 13.08
" " 6,567 .0 25, 000 94 .88
" " 8,179.0 50, 000 98.81
125, 000 2,182 .000 10, 000 178.29
" " .000 15,000 176.53
" " .000 25, 000 170.72
" " .000 50, 000 139.36
" 3,272 000 10, 000 177.43
" " .000 15,000 174,79
" " .000 25,000 166.03
" " .000 50,000 105,63
" 4,362 .000 10,000 176.58
" " .000 15, 000 173.05
" " .000 25, 000 161.28
" " 936.0 50, 000 88.70
" 10,894 .000 10, 000 171.48
" " .000 15, 00 162.64
" " .000 25,000 129,56
" " 7,480.0 50, 000 91.70
" 21,706 .000 10,000 163.17
" " .000 15, 000 145,35
" " 6,005.0 25, 000 89.98
" " 18,355.0 50, 000 96.72
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TABLE 1 (Con't.)

Iinitial Miss Distance| Miss Distance Initial Optimal
dnnge without with optimal| Velocit Steering
control control (ft/sec{ Angle
E{Qi(ft) Po (ft) p (ft) V(0) a®

200, 000 3,490 .000 10, 000 178.89
" " .000 15, 000 177.94

; " .000 25, 000 174.56

" " .000 50, 000 156.96

i} 5,235 .000 10, 000 178.34

N ! .000 15, 000 176.92

" ) .000 25,000 171.83

' : .000 50,000 144,28

K €, 530 .000 10, 000 177.78

K i .000 15,000 175.89

" i} .000 25,000 169.10

" " .000 50, 000 129,52

" 17,431 .000 10,000 174.47

" " .000 15, 000 169.76

" N .000 25, 000 152 .47

" " 8,067.0 50, 000 89.10

" 34,730 .000 10, 000 169.03

" " .000 15, 000 159,78

" " .000 25, 000 122.65

" " 25,508,0 50, 000 94,12
250, 000 4,263 ,000 10, 000 179.04
" t .000 15, 000 178.32

" * .000 25, 000 175.86

" " .000 50, 000 162.31

" 6,544 .C00 10, 000 178.56

" " .000 . 15,000 177.48

" S .000 25, 000 173.80

" " .000 50, 000 153.01

" 8,725 .000 10, 000 178.08

" ; .000 15,000 176,65

" " .000 25, 000 171.73

" " .000 50, 000 143,03

" 21,789 .000 10,000 175.21

" " .000 15, 000 171.64

" " .000 25, 000 159.32

) " 6,366.0 50, 000 86.93

" 43,412 .000 10, GO0 170.49

" " .000 15, 000 163.41

" : .000 245, 000 128.76

" " 28,175.0 50, 000 91.92
500, 000 8,726 .000 10, 000 179.28
' " .000 15, 000 178.85

N " .000 25, 000 177.8C

. " .000 50, 000 172.88

" 13,088 .000 10, 000 178.93

" " .000 15,000 178.28

) ! .000 25, 0G0 176.70

! .C00 50, 000 159,30




TABLE 1 (Con't.)

Initlal Miss Distance| Miss Distance Initial Optimal
Range without with optimal| Veloclty |Steering
control control (ft/sec) Angle
R(0)(rt) g (£t) p (re)| V(o) as
500, 000 17,450 .000 10, 000 178.57
" " .000 15, 000 177.71
" " 0G0 25, 000 175,60
" " .000 50, 000 165,71
" 43,578 | - 000 S 10,000} 17642
" " .000 15, 000 174.28
" " .000 25, 00Q 168,99
" " . 000 50, 00C 143,41
" 86,824 .000 10, 000 172.87
" " .000 15, 000 168,60
" " .000 25, 000 157.96
" " .000 50, 000 89,24
Rocket#2
50, 000 873 .000 10, 000 171.71
" " 00 15, 000 161.77
" " .000 25, 000 121.54
" " 618.0 50, 000 90.41
" 1,309 .000 10, 000 167.53
" " .000 15,000 152,13
" " 273.0 25, 000 89,08
" " 1,055,0 50, 000 90.91
" 1,745 .000 10, Q00 163.31
" " . 000 15, 000 141.71
" " 710.0 25, 000 89,58
" " 1,491.0 50,000 90.91
" 4,358 .000 10,000 135.85
" " . 000 15,000 | 5.4
" P 3,327.0 5,000 | 92.5
" " 4,105.0 50, 000 94,41
" 8,682 .000 10, 000 13.83
" " .000 15, 000 16.89
" " 7,672.0 25, 000 97 .60
" ,? 8,435.0 50, 000 99.42
. 125,000 2,182 : 000 10,000 176.60
- " . 000 15, 000 172.85
" " .000 25, 000 160.39
" - " 549.0 50, 000 89.47
" 3,272 .000 10, 000 174.90
" S .000 15,000 169.26
" " , .000 25,000 149.91
" " 1,640.0 50, 000 89.97
" 4;%62 000 10,000 173.19
o™ - .000 15,000 1R5.65
ey "o 000 25, 000 138.38
n " 90.47




TAELE 1 (Con't.)

!

Initlal Miss Distanre| Miss Distance Inttial Optimal
Range without with optimal {Velocit Steering
control control (i"t./secg Angle
R{OY(r) py, (e} p o (re) v(c) a®
125, 00C 10,394 , 000 16,000 152.9(
" " . 0G0 15,000 142,33
" " 4,029.0 25, 0CG o234
" " 9,271.0 50, 000 93,47
" 21,706 .00 10, oCe 145.89
" " , 000 15,000 15.92
" " l“’ 93200 25)OGC 93-35
" " 20,117.0 50, Q00 93 .49
200, 000 3,490 OO0 10, 000 177.85
" " .000 15, 000 175,60
" " .000 25,000 168,17
" " .000 50, 000 124,64
" 5,235 .000 10, 000 176.78
. " .0C0 15, 000 173 .40
) " .000 25,000 142,14
" " 935.0 50, 000 88,94
" 5,980 .0Q0 10,000 175.71
" " .00C 15, Q00 171.20
" " .000 25, 000 155.95
" " 2,680.,0 50, 000 89,44
" 17,431 .000 10,000 169.31
" " .00V 15,000 157 .58
" " .000 25, 000 106,85
" " 13,151.,0 50, 000 92,44
" 34,730 L000 10, 000 158,86
" " .000 15, 000 134,95
" " 15,904 ,0 25, 000 87.36
! " 30,533.0 50, V00 97 .46
250, 000 4,363 .000 10, 000 178.29
" n .000 15, GO0 176.53
" " 000 - 25, 000 170.72
" " .000 50, 000 139.36
" 6, 5hl4 .000 10, 000 177.43
" " .000 15, 000 174.79
" " . 000 25, 000 166,03
" " .000 50, 000 105,63
N 8,725 000 10,000 176,58
" " .000 15,000 173.05%
" " .000 25, 000 161.28
" " 1,871.0 50, 000 88,70
" 21,789 .000 10, CCO 171,48
" " .000 15,000 162,64
" " .000 25, 000 129.56
" " 14,960,0 50, 000 91,70
" 43,412 000 10, 000 163,17
" " 000 15,000 145,35
" " 12,011,0 25, 000 82.98
" " 36,711.0 50, 0v0 96.72




TapLe 1 (Con't.;

Init1al | Miss Distance| Mics Distance Initlal] Optimal
Range wilthout with optimal] Veloclty| Steering
control control (ft/sec) Angle
R(O)(ft) P (£t p (r V(0] a®
500, 000 8,726 elele 1C, Q¢ 179.0C4
" " . Q00 15, 00C 178,32
" " . 000 25, 000 175,86
" " .0C0 50, 000 162,31
" 13,088 .000 10, 0CO 178.56
" " .00¢ 15,000 177 .43
" " .0CO 25, 000 173.80
" " . 000 £0, 000 153.01
" 17, 450 .000 10, 000 178.08
" " .000 15, 0QC 176.65
e " .000 25,000 171.73
" " .000 50, 000 143,03
" 43,578 .000 10, 000 175.21
" " .000 15, 000 171.64
" " .000 25, 000 159,32
" " 12,732.0 5C, COC 86.93
" 86,824 .000 10, 000 170.49
! " L000 15,000 163,41
" " .000 25, 000 138.76
" " 56,349.0 50, 000 91.92
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APPENDI
INTERCEPT LOGIC AND EQUATIONS

To slmplify the bookkeeplng 1In the program we make

some changes in notation. Let x = x, , ¥y = %X, , v, = x2 ,
4 s B

; = v
\Ivr )

J 2
The equations of motion of the intercept venicle

with origin at the lLargetl arec:

X, = X,
1 3
o T Xy
X3 = a(t) cos a(t)

a(t) sin a(t)

R
Py
1t

c e
o B O
mo/ﬁ -t T 1 -t

where a(t) =
m

o

T = ==

8

The thrust angle program, a(t), 1is required to

1 5 = 0) or, if

that 1s impossible, to m'nimize +the distance to the

target (min Vy§ + x?)' The application of Pontryagin's
- 2

minimize the time to intercept (x, = x

Maximum Principle to the problem yields the result that

a(t) is equal to some constant a°

. The equations above
can then be integrated to yleld: '

x;(t) = A(t) cos a®+ x3(o)t + x,(0)
x,(t) = A(t) sin aC+ x), (0)t + x,(0)
x3(t) = A(t) cos o+ x3(O)
xy () = A(t) sin o+ x,,(0)
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W eth

wh:-re

N\
A(L) =‘\p(§“7\ t+ Bl e Mo _ o g -
\*f’\‘b; Ad\ub/\u uba’ = (9
. {7(t) t <t
A(L} - (f)(lf' \' L. " V
S T 20,
. I§<t) , ot
\ —
A(t B LCy S L,u
s Blt), <t
Alt) = 4 15
' Lo, t >ty

and

=
B(t) = -¢_ ¢n (1 - %)
. C

(t) = alt) = 2

T -t

'Q.( ) CO

(t) = ———————

(r - ¢)°

and tb denotes the instant at which the rockel engine
stops burning.

The problem 1s now one of determining t° and a°
such that  x,(t°%) = xg(to) - 0 or, if that 1s impossible,
such that +/x£(t%) + x5(t°) is minimized, t° being the
minlmum time to intercept or, if that is impossible, the

time to minimum distance from the target. If the coordi-
nate system 1s changed sc that the intercept vehlcle 1is
initially at rest at the origin and the target 1s travel-
ling on a straight line at constant velocity, then A(t)
represents the distance of the intercept vehicle from the
new origin at time t. The equations of motion of the
target vehlcle in the new coordinates become:

Y1 =V¥3

J2 = v4

y3 =0

Jy = O




or

ylft) = xl(O) + x3(G}t
yggt) = XQ(O) + xu(ﬁ}t
y3{t) = x3(0)
yu‘ft) = xu(O)

Thc -iistance of thr target vehlcle from the origin 'n
the rew ¢ 'rdinate system 1is defined as E(t), or (iig. 5a)

E(t) = +/¥2(t) + y3(t)

wnicih ylelds the derivatives to be used later
B0 = Ay (05(0) + yy(edyy(0)]
-, 2
B = 33, (03,00) - yp(6)x500) ]

- 2

1 -

= E{XI(U)}CM(O) - X2(0)x3(0)]

oss 2
£0) == 21 (033003 (8) [ 1,01, (0) 2 (0125 (0) |

At time t the intercept vehicle can reach any
point on the circumference of a circle of radius A(t)
by sultable choice of a. Hence, the original problem
1s equivalent to one of determining the smallest £°
such that A(t°) = E(t°) or, if that 1s impossible, the
t® such that |A(t°) - E(t°)| is a minimum. The angle a°

can be determined from

y1(t°)
yo(t°)
Clearly, whenever |A(t°) - E(t°)| 1is a minimum,
[A(t°) - E(t°;12 1is a minimum and vice versa. Since
the latter function is more tractable analytically, it
w11l henceforth be used to determine t°. Formally set-
ting the derivative of [A(t) - E(t)]? equal to zero,

E(t°) cos (a® - 7)
= E(t°) sin (a® - 7)

L [a(e) - E(£)1° €% - 2la(t) - E(6)ILA(L) = E(t)]

ylelds a necessary condition for [A(t) - E(t)]° to be a
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minimum; that 1s, A(t) = E(t), or A(t) - E(t). As e
ster In determining the possiple roots of these equatlions,
the quantities tO’ tl’ t2, t3 are deflned as the roots
(1f they exist) of the ejuatlions

o &
h(tO) = O

or A . .
to = = [xg(0)x (00 + x {00 (O3 ]/TxS (00 + % (0)]
gétli - gﬁtl; = 0
Al{t,} - Elt = O .
A(tz‘ - é’*g) = 0 } 2 At

) 31 \US —
The quantity to (gererally not equal to zero) 1s the

time at which the target vehicle 1s closest to the origin
(the starting point for the intercept vehicle). The quan-
tities tl, te, t3
of the appropriate equations above, when they are known

are used Iin Chart I to indlicate roots

to exist. Flgure 5(a) 1llustrates the various critical
instants

The above facts are used In Chart I to determine the
loglc necessary to locate the solution £° and to determine
whether a CATCH [A(t°) = E(t®)] or a MISS [min[A{t®)-E(:%)1°]
is possible, Since the A equations change for t > tb’
bp

is used to indicate that the eqguations for t < tb
. + . ,
should be used and vice versa for t%.. The times tl’ [

t, and £° may all e Tound by using %ewton’s method for -
lgcating the zeros of a function., In the chart, [ 1is
used to indlcate the function whose zero 1s sought. Since
some -7 the functions have multiple zeros (and/or their
derivatives have zeros), the symbol ts is used to indicate
a starting point for Newton's method. Due to monotone
properties of the functions and derivatives invelved, use
of ts as a starting point guarantees the convergence of
Newton's method.

There are times when 1t might be desirable to let
the intercept vehicle fire at some instant later than
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(a) Typical Intercept

Yo P
s
A
7
At
t =t Z o -
= -
® 2T = t°
cﬁofs
338 04;“3
“e 4
qe“&c)' .360
ccels E(t), A&5°
308e Ae
Qé“\' / bp!
s
o(t) 4;‘196 At

(o)

t = t* (intercept vehicle

fires at this time)

Ini. tal Intercept Coast Trajectory

Filgure 5. Geometrical Configuration of Intercept Trajectories.
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zero, especlally if the target 1s approaching (to > 0),

sce Filgure 5(p), There 15 generally a maximum permls-
sible period of initlal coa t, def'ined as t¥ shown In
Flgure S(b). The remalning material of thils appendix
deals wlth the analysis of thils cace. In order tor a
CATZH to be possible A(t° -t% = E(t%). Differentiating

with respect to t7, one obtains

:
. 4t * .
A" —tﬂLl - ] - B O

dr”
or
drnk* VI -t
= - A(LY -t® - BE(tY)
dt
R Fol 4 e x S - i d.t* s . N N
In order Tor ©¥ 1o bLe maximum o - 3 hence two nooed-
y ‘ . L0 .
sary conditions for the determlnation of t~ and t* are
o) . /.0
A(tT -6% = E(t
* C\ - O
A{t -t% = E(t
. 0 s s
The problem of determining t~ and **can be simplL led if
E{t) and E(t) are axp“gssed in terms of E E(t )

o ihr inter-

minimum distance o©f tar
'5(0}, the speed ol the

A
cept origin, V 2 /x
target vehicle, and }, the angle between the posi-

(&
(t)

tion of the target vehicle at to and its position at
gt

any later time t, with €{(t) restricted to the first quadrant.
Then
E{(t) = E /co° a(t)
tan 6(t) = V[t -t 1/E
{Seﬂ‘@(*ﬂ 9%%;1 = V/EO
E(t) = E, sin 6(t) sec®(r) 42LEL
=V sin 8(t)
1f At 2 t° - t*, the problem has become one of determining
At and 6(t°) such that
A(st) = E_/cos 6(t°)
A(at) = V sin 8(t°)

when 6(t%) 1is eliminated, the following equation 1s
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obtalned o

Ir
A . . . ~ - .,2 . . 2
F(e) = [are)aer )=+ fve I - [va(ey]
then
Pty = 2A(e) AL IA(e)alt) + [A(L)]9 - v9]
and At ig the root off the waogat ior A - U, Sinoa

g tiornn F{At
[ t\";? r o '1(;
TR - Hﬂ,w
At=>0t ¥ AL !

1
T

igae) ]2 7 "))
A§3§alﬁg %t>J * LA(gtS f =Ll
it 1s easy to see that, 1f A(t_} < V, then F{t) has at
least one positive real zero. If F(Lb) < U, then the
zero must be less than t, (F(0O) = [VEO]? > 0), If
F(tb) > O, then with F(t) rewritten as

Alt_ )12 E_ 72
 f < 12 & O
F(t) = [vA(t)] { [ 5 J -1+ [A(t>]g}, Tty

the 1imit of F(t) as t -> « 1s clearly negative,
and hence F(t) has a zero for t > t,. If A(tb) >V,
the Intercept vehlcie can fire at any time and always

catch the target because 1its burnout veloclty 1s greaterr
than the velocity of the target. Chartll indicates the
logic steps necessary to locate the desired zero of
F(t).

Once At 1is determined, t° 1s specified by
E(t°%) = A(at) with +° chosen as the largest root
of the equation. If t* =1t° - At ¢ O, then intercep-
tion 18 1mposslible and the intercept vehlcle should

fire at t = O,
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16 LZVY

X
08 8
RX1075 (FT)
o { 2 3 4 5 ak
dy(T) Ay(T) .5
3x(0) 3% (0) RX10 " FT)
| 2 3 4 5
-08 (0]
(FT/FT) (FT./FT/SEC)
- 16 - -4
-.8%
RX10°% (FT)
0 i 2 3 4 5
Qoo T T T |
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-20t

Figure 18. Summary, Rocket #l, ¢ = 180.5°, Po = 4363 rt.,,
R(O) = 500,000 ft., V(0) = I - 25,000,
II - 50,000, V - 10,000 ft./sec.
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R(O) = 500,000 ft., V(0) = III - 25,000,

Vv - 50,000 ft,./sec.
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